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Industrial applications of electrical machines and their drive systems often involve simultaneous design and optimization of multiple 

objectives that usually contradict to each other. This work aims to present system-level deterministic and robust design methods for the 

multi-objective optimization of electrical drive systems. Two approximation techniques, Kriging model and Taylor approximation are 

presented to improve the optimization efficiency. Thereafter, an electrical drive system consisting of a permanent magnet transverse 

flux machine and a field oriented control scheme is investigated to illustrate the performance of the proposed method. Deterministic 

design and robust optimal Pareto solutions are presented and discussed for the multi-objective optimizations, respectively. It can be 

seen that the robust multi-objective optimization can produce optimal Pareto solutions with smaller standard deviations for design 

requirements than the deterministic approach for this drive system. More importantly, the failure probability of the drive system can 

be reduced significantly by using the robust multi-objective optimization. 

 
Index Terms—Electrical machines, motor drives, optimization methods, robustness. 

 

I. INTRODUCTION 

PTIMIZATION design of electrical drive systems often 

involves multiple objectives for both motors and control 

systems, such as motor cost and efficiency, and speed 

overshoot and torque ripple. Thus, the corresponding design 

and optimization are actually multi-objective issues [1]-[3].  

   Regarding the multi-objective optimization of drive systems, 

most of the current works focus on the motors only, such as 

high efficiency and/or low torque ripple [4], [5]. However, 

they are on the component level, i.e. motor level, rather than 

on system level as the design parameters in control systems 

have not been considered. Therefore, the system’s 

performance, especially the dynamic performance cannot be 

ensured. On the other hand, the real quality of motors and 

drives in mass production highly depends on the available 

machinery technology and those unavoidable variations or 

uncertainties in the manufacturing process, and assembly 

process. Traditional deterministic design optimization method 

cannot handle these variations. This is the main reason why 

robust optimization is popular nowadays [6], [7]. 

   Optimization efficiency issue becomes critical for electrical 

drive systems with the introduction of robust optimization. 

The most computational burden is from finite element analysis 

(FEA) of motors, simulation calls of controllers, Monte Carlo 

analysis (MCA) of the robust analysis. This work aims to 

present system-level deterministic and robust design methods 

for the multi-objective optimization of drive systems.  

II. MULTI-OBJECTIVE OPTIMIZATION MODELS FOR     

ELECTRICAL DRIVE SYSTEMS 

Fig. 1 illustrates a brief system-level design and 

optimization framework for electrical drive systems. As 

shown, there are many design parameters (including motor 

design parameters and control parameters), objectives and 

constraints. In general, a multi-objective deterministic design 

model with respect to p objectives f(x) and m constraints g(x) 

has the form as 
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where xl and xu are the boundaries of the design parameter x,  

To consider the manufacturing variations, model (1) can be 

converted into a robust design model (2) based on a technique 

called design for six-sigma (DFSS).  
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where μ and σ are means and standard deviations, n is the 

sigma level. In the implementation, MCA is usually employed 

to evaluate the quality indicators μ and σ [1], [6]. In order to 

improve the optimization efficiency, Kriging model is used to 

reduce the computation cost of FEA, and Taylor 

approximation is employed to decrease the controller 

simulation cost used in MCA. 
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Fig. 1.  System level design and optimization framework for drive systems 
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III. EXAMPLE STUDY 

A drive system consisting of a transverse flux machine 

(TFM) as shown in Fig. 2 [1]-[3] and a field-oriented control 

(FOC) system as shown in Fig. 3 will be investigated in this 

section. In the optimization, seven motor structural parameters 

and two PI control parameters are selected as the optimization 

parameters of the whole drive system. The multi-objective 

optimization model of this drive system is defined as 
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where f1 is the material cost, f2 the torque output. η and Pout 

are the motor’s efficiency and output power respectively, sf 

and Jc the fill factor and current density of the winding, 

respectively. ω is the dynamic response of speed. 

   Figs. 4-6 and Table I show the optimization results. The 

following conclusions can be drawn from them.  

   1) As shown in Fig.4, the front of the Pareto solutions 

obtained from robust multi-objective approach is obviously 

lower than the deterministic approach. It means that the 

needed cost of robust design is higher than that of 

deterministic design to achieve the same torque for this drive 

system. However, as shown in Fig.5, the probability of failure 

(POF) of optimal Pareto points from deterministic multi-

objective design are unstable and obviously higher than those 

from robust design. These are very bad design schemes from 

the point of view of industrial quality designs.  

   2) As shown in Fig. 6 and Table I, constraints in robust 

multi-objective approach have smaller standard deviations and 

better means (such as bigger efficiency and smaller current 

density) than in the deterministic approach, which means 

robust multi-objective approach can produce more high-

quality products than a deterministic approach.  

   In brief, the reliabilities and sigma levels obtained from 

robust multi-objective approach are obviously better than 

those from the deterministic approach. Therefore, system-level 

robust multi-objective design optimization is necessary for the 

modern quality design of industrial electrical drive systems. 
 

 
Fig. 2. Prototype of a TFM, (left) rotor, (right) 3 stack stator 

 

 
Fig.3.  FOC scheme for the PM TFM 

 
Fig. 4.  Pareto solutions for the drive system 

 

 
Fig. 5.  POF values for optimal Pareto points 

 

 

Fig. 6.  Mean of current density for all Pareto points 

 

TABLE I 

MEAN OF THE CONSTRAINTS  

Constrains 
Deterministic Robust 

μ σ μ σ 

η 0.818 0.001 0.826 0.001 

Jc 5.88 0.11 5.32 0.09 

RMSE(T) 0.019 0.006 0.017 0.003 

RMSE(ω) 0.005 0.0125 0.001 0.0001 
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